IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 4: December 2021

A self-adaptation algorithm for quay crane scheduling at a container terminal

Esam Taha Yassen (University of Anbar)
Masri Ayob (Universiti Kebangsaan Malaysia)
Alaa Abdalqahar Jihad (University of Anbar)
Mohd Zakree Ahmad Nazri (Universiti Kebangsaan Malaysia)



Article Info

Publish Date
01 Dec 2021

Abstract

Quay cranes scheduling at container terminals is a fertile area of study that is attracting researchers as well as practitioners in different parts of the world, especially in OR and artificial intelligence (AI). This process efficiency may affect the accomplishment and the competitive merits. As such, four local search algorithms (LSs) are utilized in the current work. These are hill climbing (HC), simulated annealing (SA), tabu search (TS), and iterated local search (ILS). The results obtained demonstrated that none of these LSs succeeded to achieve good results on all instances. This is because different QCSP instances have different characteristics with NP-hardness nature. Therefore, it is difficult to define which LS can yield the best outcomes for all instances. Consequently, appropriate LS selection should be governed by the type of problem and search status. The current work proposes to achieve this, the self-adaptation heuristic (self-H). The self-H is composed of two separate stages: The upper (LS-controller) and the lower (QCSP-solver). The LS-controller embeds an adaptive selection mechanism to adaptively select which LS is to be adopted by the QCSP-solver to solve the given problem. The results revealed that the self-H outperformed others as it attained better results over most instances and competitive results.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...