Jurnal Teknologi dan Sistem Komputer
Volume 10, Issue 1, Year 2022 (January 2022)

Data scaling performance on various machine learning algorithms to identify abalone sex

Willdan Aprizal Arifin (Marine Information System, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No.229, Isola, Sukasari, Bandung City, West Java 40154|Universitas Pendidikan Indonesia)
Ishak Ariawan (Marine Information System, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No.229, Isola, Sukasari, Bandung City, West Java 40154|Universitas Pendidikan Indonesia)
Ayang Armelita Rosalia (Marine Information System, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No.229, Isola, Sukasari, Bandung City, West Java 40154|Universitas Pendidikan Indonesia)
Lukman Lukman (Marine Information System, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No.229, Isola, Sukasari, Bandung City, West Java 40154|Universitas Pendidikan Indonesia)
Nabila Tufailah (Marine Information System, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No.229, Isola, Sukasari, Bandung City, West Java 40154|Universitas Pendidikan Indonesia)



Article Info

Publish Date
31 Jan 2022

Abstract

This study aims to analyze the performance of machine learning algorithms with the data scaling process to show the method's effectiveness. It uses min-max (normalization) and zero-mean (standardization) data scaling techniques in the abalone dataset. The stages carried out in this study included data normalization on the data of abalone physical measurement features. The model evaluation was carried out using k-fold cross-validation with the number of k-fold 10. Abalone datasets were normalized in machine learning algorithms: Random Forest, Naïve Bayesian, Decision Tree, and SVM (RBF kernels and linear kernels). The eight features of the abalone dataset show that machine learning algorithms did not too influence data scaling. There is an increase in the performance of SVM, while Random Forest decreases when the abalone dataset is applied to data scaling. Random Forest has the highest average balanced accuracy (74.87%) without data scaling.

Copyrights © 2022






Journal Info

Abbrev

JTSISKOM

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan ...