CAUCHY: Jurnal Matematika Murni dan Aplikasi
Vol 6, No 4 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi

Analysis of The Rosenzweig-MacArthur Predator-Prey Model with Anti-Predator Behavior

Djakaria, Ismail (Unknown)
Gaib, Muhammad Bachtiar (Unknown)
Resmawan, Resmawan (Unknown)



Article Info

Publish Date
30 May 2021

Abstract

This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.

Copyrights © 2021






Journal Info

Abbrev

Math

Publisher

Subject

Mathematics

Description

Jurnal CAUCHY secara berkala terbit dua (2) kali dalam setahun. Redaksi menerima tulisan ilmiah hasil penelitian, kajian kepustakaan, analisis dan pemecahan permasalahan di bidang Matematika (Aljabar, Analisis, Statistika, Komputasi, dan Terapan). Naskah yang diterima akan dikilas (review) oleh ...