Bulletin of Electrical Engineering and Informatics
Vol 10, No 3: June 2021

A multistage successive approximation method for Riccati differential equations

Petrus Setyo Prabowo (Sanata Dharma University)
Sudi Mungkasi (Sanata Dharma University)



Article Info

Publish Date
01 Jun 2021

Abstract

Riccati differential equations have played important roles in the theory and practice of control systems engineering. Our goal in this paper is to propose a new multistage successive approximation method for solving Riccati differential equations. The multistage successive approximation method is derived from an existing piecewise variational iteration method for solving Riccati differential equations. The multistage successive approximation method is simpler in terms of computing implementation in comparison with the existing piecewise variational iteration method. Computational tests show that the order of accuracy of the multistage successive approximation method can be made higher by simply taking more number of successive iterations in the multistage evolution. Furthermore, taking small size of each subinterval and taking large number of iterations in the multistage evolution lead that our proposed method produces small error and becomes high order accurate.

Copyrights © 2021






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...