Journal of the Indonesian Mathematical Society
VOLUME 27 NUMBER 2 (July 2021)

Queens Independence Separation on Rectangular Chessboards

Kaluri, Sowndarya Suseela Padma (Unknown)
Naidu, Y Lakshmi (Unknown)



Article Info

Publish Date
16 Jul 2021

Abstract

The famous eight queens problem with non-attacking queens placement on an 8 x 8 chessboard was first posed in the year 1848. The queens separation problem is the legal placement of the fewest number of pawns with the maximum number of independent queens placed on an N x N board which results in a separated board. Here a legal placement is defined as the separation of attacking queens by pawns. Using this concept, the current study extends the queens separation problem onto the rectangular board M x N, (MN),  to result in a separated board with the maximum number of independent queens. The research work here first describes the  M+k queens separation with k=1 pawn and continue to find for any k. Then it  focuses on finding the symmetric solutions of the M+k queens separation with k pawns.

Copyrights © 2021






Journal Info

Abbrev

JIMS

Publisher

Subject

Mathematics

Description

Journal of the Indonesian Mathematical Society disseminates new research results in all areas of mathematics and their applications. Besides research articles, the journal also receives survey papers that stimulate research in mathematics and their ...