In this paper, an attempt is made to study approximate reasoning based on a Type-2Â fuzzy set theory. In the process, we have examined the underlying fuzzy logic structure on which the reasoning is formulated. We have seen that the partial/incomplete/imprecise truth-values of elements of a type-2 fuzzy set under consideration forms a lattice. We propose two new lattice operations which ultimately help us to define a residual and thereby making the structure of truth- values a residuated lattice. We have focused upon two typical rules of inference used mostly in ordinary approximate reasoning methodology based on Type-1 fuzzy set theory. Our proposal is illustrated with typical artificial examples.
Copyrights © 2021