Scientific Journal of Informatics
Vol 8, No 2 (2021): November 2021

Implementation of Support Vector Machine Algorithm with Correlation-Based Feature Selection and Term Frequency Inverse Document Frequency for Sentiment Analysis Review Hotel

Ririanti, Novia Puji (Unknown)
Purwinarko, Aji (Unknown)



Article Info

Publish Date
30 Nov 2021

Abstract

Purpose: The study aims to reduce the number of irrelevant features in sentiment analysis with large features. Methods/Study design/approach: The Support Vector Machine (SVM) algorithm is used to classify hotel review sentiment analysis because it has advantages in processing large datasets. Term Frequency-Inverse Document Frequency (TF-IDF) is used to give weight values to features in the dataset. Result/Findings: This study's results indicate that the accuracy of the SVM method with TF-IDF produces an accuracy of 93.14%, and the SVM method in the classification of hotel reviews by implementing TFIDF and CFS has increased by 1.18% from 93.14% to 94.32%. Novelty/Originality/Value: Use of Correlation-Based Feature Section (CFS) for the feature selection process, which reduces the number of irrelevant features by ranking the feature subset based on the strong correlation value in each feature

Copyrights © 2021






Journal Info

Abbrev

SJI

Publisher

Subject

Computer Science & IT

Description

Scientific Journal of Informatics published by the Department of Computer Science, Semarang State University, a scientific journal of Information Systems and Information Technology which includes scholarly writings on pure research and applied research in the field of information systems and ...