JAIS (Journal of Applied Intelligent System)
Vol 6, No 2 (2021): Journal of Applied Intelligent System

Improvement of Accuracy and Handling of Missing Value Data in the Naive Bayes Kernel Algorithm

Bijanto Bijanto (Sekolah Tinggi Teknik Pati)
Ryan Yunus (Technical College of Pati)



Article Info

Publish Date
06 Dec 2021

Abstract

The lost impact on the research process, can be serious in classifying results leading to biased parameter estimates, statistical information, decreased quality, increased standard error, and weak generalization of the findings. In this paper, we discuss the problems that exist in one of the algorithms, namely the Naive Bayes Kernel algorithm. The Naive Bayes kernel algorithm has the disadvantage of not being able to process data with the mission value. Therefore, in order to process missing value data, there is one method that we propose to overcome, namely using the mean imputation method. The data we use is public data from UCI, namely the HCV (Hepatisis C Virus) dataset. The input method used to correct the missing data so that it can be filled with the average value of the existing data. Before the imputation process means, the dataset uses yahoo bootstrap first. The data that has been corrected using the mean imputation method has just been processed using the Naive Bayes Kernel Algorithm. From the results of the research tests that have been carried out, it can be obtained an accuracy value of 96.05% and the speed of the data computing process with 1 second.

Copyrights © 2021






Journal Info

Abbrev

JAIS

Publisher

Subject

Description

Journal of Applied Intelligent System (JAIS) is published by LPPM Universitas Dian Nuswantoro Semarang in collaboration with CORIS and IndoCEISS, that focuses on research in Intelligent System. Topics of interest include, but are not limited to: Biometric, image processing, computer vision, ...