Knowledge Engineering and Data Science
Vol 4, No 2 (2021)

Stress Classification using Deep Learning with 1D Convolutional Neural Networks

Abdulrazak Yahya Saleh (Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia)
Lau Khai Xian (Unknown)



Article Info

Publish Date
15 Dec 2021

Abstract

Stress has been a major problem impacting people in various ways, and it gets serious every day. Identifying whether someone is suffering from stress is crucial before it becomes a severe illness. Artificial Intelligence (AI) interprets external data, learns from such data, and uses the learning to achieve specific goals and tasks. Deep Learning (DL) has created an impact in the field of Artificial Intelligence as it can perform tasks with high accuracy. Therefore, the primary purpose of this paper is to evaluate the performance of 1D Convolutional Neural Networks (1D CNNs) for stress classification. A Psychophysiological stress (PS) dataset is utilized in this paper. The PS dataset consists of twelve features obtained from the expert. The 1D CNNs are trained and tested using 10-fold cross-validation using the PS dataset. The algorithm performance is evaluated based on accuracy and loss matrices. The 1D CNNs outputs 99.7% in stress classification, which outperforms the Backpropagation (BP), only 65.57% in stress classification. Therefore, the findings yield a promising outcome that the 1D CNNs effectively classify stress compared to BP. Further explanation is provided in this paper to prove the efficiency of 1D CNN for the classification of stress. 

Copyrights © 2021






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...