JSAI (Journal Scientific and Applied Informatics)
Vol 4, No 2 (2021): Juni 2021

Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network

Ayumi, Vina (Unknown)
Nurhaida, Ida (Unknown)



Article Info

Publish Date
01 Jul 2021

Abstract

Deteksi dini terhadap adanya indikasi pasien dengan gejala COVID-19 perlu dilakukan untuk mengurangi penyebaran virus. Salah satu cara yang dapat dilakukan untuk mendeteksi virus COVID-19 adalah dengan cara mempelajari citra chest x-ray pasien dengan gejala Covid-19. Citra chest x-ray dianggap mampu menggambarkan kondisi paru-paru pasien COVID-19 sebagai alat bantu untuk diagnosa klinis. Penelitian ini mengusulkan pendekatan deep learning berbasis convolutional neural network (CNN) untuk klasifikasi gejala COVID-19 melalui citra chest X-Ray. Evaluasi performa metode yang diusulkan akan menggunakan perhitungan accuracy, precision, recall, f1-score, dan cohens kappa. Penelitian ini menggunakan model CNN dengan 2 lapis layer convolusi dan maxpoling serta fully-connected layer untuk output. Parameter-parameter yang digunakan diantaranya batch_size = 32, epoch = 50, learning_rate = 0.001, dengan optimizer yaitu Adam. Nilai akurasi validasi (val_acc) terbaik diperoleh pada epoch ke-49 dengan nilai 0.9606, nilai loss validasi (val_loss) 0.1471, akurasi training (acc) 0.9405, dan loss training (loss) 0.2558.

Copyrights © 2021






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...