JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 8 No 4 (2021): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Penggunaan Fitur Saliency-SURF untuk Klasifikasi Citra Sel Darah Putih dengan Metode SVM

Siska Devella (Unknown)
Yohannes Yohannes (Unknown)
Celvine Adi Putra (Unknown)



Article Info

Publish Date
14 Dec 2021

Abstract

Sel darah putih merupakan sel pembentuk komponen darah yang berfungsi melawan berbagai penyakit dari dalam tubuh (sistem kekebalan tubuh). Sel darah putih dibagi menjadi lima jenis, yaitu basofil, eosinofil, neutrofil, limfosit, dan monosit. Pendeteksian jenis sel darah putih dilakukan di laboratorium yang memerlukan seorang spesialis serta usaha yang lebih, waktu, dan biaya. Solusi yang dapat dilakukan salah satunya adalah menggunakan machine learning seperti support vector machine (SVM) dengan ekstraksi fitur SURF. Penelitian ini menggunakan dataset citra sel darah putih yang sebelumnya dilakukan tahap pre-processing yang, terdiri dari crop, resize, dan saliency. Metode saliency mampu memberikan bagian yang bermakna pada sebuah citra. Metode ekstraksi fitur SURF mampu memberikan keypoint yang dapat digunakan SVM dalam mengenali jenis sel darah putih. Penggunaan region-contrast saliency dengan kernel radial basis function (RBF) mendapatkan hasil akurasi, presisi, dan recall yang baik di bandingkan dengan penggunaan kernel lain dalam penelitian ini. Berdasarkan hasil pengujian yang didapat pada penelitian ini, saliency dapat meningkatkan hasil akurasi, presisi, dan recall dari SVM untuk dataset citra sel darah putih dibandingkan dengan tanpa saliency.

Copyrights © 2021






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...