Penelitian ini bertujuan untuk menentukan mengestimasi data yang kosong atau data yang hilang (Mising data). Missing data adalah hilangnya sebagian informasi atau sebagian data pada suatu penelitian. Metode yang digunakan untuk mengatasi missing data pada artikel ini Multivariate Imputation by Chained Equation (MICE). Penerapan MICE terdiri dari tiga langkah utama, yaitu imputasi, analisis, dan pooling. Hasil analisis terhadap data sekunder menghasilkan diperlukan lima kali imputasi untuk mengisi missing data. Langkah analisis menggunakan analisis regresi linear berganda, dengan lima model fit. Kemudian pada langkah pooling, ke-lima model fit regresi linear berganda yang dihasilkan digabungkan menjadi model pool. Selanjutnya model pool yang diperoleh dibandingkan dengan model regresi berganda data awal. Hasil perbandingan menunjukkan bahwa persamaan linear berganda dengan missing data yang diestimasi metode MICE mendekati persamaan liner berganda yang disusun dari data awal, dengan demikian estimasi missing data dengan metode MICE dapat dikatakan baik untuk digunakan.
Copyrights © 2021