ILKOM Jurnal Ilmiah
Vol 11, No 3 (2019)

ANALISIS PERFORMA METODE K-NEAREST NEIGHBOR UNTUK IDENTIFIKASI JENIS KACA

Mus Mulyadi Baharuddin (Universitas Muslim Indonesia)
Huzain Azis (Universitas Muslim Indonesia)
Tasrif Hasanuddin (Universitas Muslim Indonesia)



Article Info

Publish Date
31 Dec 2019

Abstract

Nowadays, the industry makes various types of goods that have glass-based materials, float car window panes, non-float building windows, lamps, jars, and tableware. These glasses have the same production material, the difference between one and the other is the composition of the production material. K-Nearest Neighbor (KNN) algorithm which is one of the classification methods in data mining and also a supervised learning algorithm in machine learning is a method for classifying objects based on learning data that is the closest distance to the object.. This study discusses the performance measurement (accuracy, precision, recall and f-measure) of the KNN method with a variety of values on 1000 glass type production data objects obtained from the central UCI Machine Learning Repository dataset. The conclusion of this research is the results of the value of K = 3 to K = 9, the best performance values obtained at K = 3, where the level of accuracy reaches 64%, 63% precision, 71% recall, and F-Measure of 67%.

Copyrights © 2019






Journal Info

Abbrev

ILKOM

Publisher

Subject

Computer Science & IT

Description

ILKOM Jurnal Ilmiah is an Indonesian scientific journal published by the Department of Information Technology, Faculty of Computer Science, Universitas Muslim Indonesia. ILKOM Jurnal Ilmiah covers all aspects of the latest outstanding research and developments in the field of Computer science, ...