ILKOM Jurnal Ilmiah
Vol 13, No 2 (2021)

Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier

Rifki Kosasih (Universitas Gunadarma)
Anggi Alberto (Universitas Gunadarma)



Article Info

Publish Date
08 Aug 2021

Abstract

In every product sold on the E-commerce platform, there is a review column from consumers who have made transactions on the products. These reviews are in the form of comments and ratings (stars from one to five) written and given by consumers based on their assessment of the products purchased. With the product evaluation feature based on the rating, the consumer can find out how good or bad the quality of the product is. However, a problem arises when some consumers give negative comments with five stars or vice versa. This causes the product assessment feature based on the rating to be less good so that it does not represent the real value. Therefore, to determine the quality of the product, sentiment analysis was carried out using the TF-IDF method and the Naive Bayes Classifier based on reviews from buyers. The data collected is 1000 reviews which are divided into 700 training data and 300 test data. The next stage is the preprocessing text such as case folding (converting uppercase letters to lowercase), tokenizing (separating sentences into single words), stopwords (removing tokenizing conjunctions that have nothing to do with sentiment analysis), stemming (changing words into basic word forms), and word weighting with TF-IDF. The last step is to classify. Based on the classification results obtained an accuracy rate of 80.2223%.

Copyrights © 2021






Journal Info

Abbrev

ILKOM

Publisher

Subject

Computer Science & IT

Description

ILKOM Jurnal Ilmiah is an Indonesian scientific journal published by the Department of Information Technology, Faculty of Computer Science, Universitas Muslim Indonesia. ILKOM Jurnal Ilmiah covers all aspects of the latest outstanding research and developments in the field of Computer science, ...