In helping to develop technology in the field of education as well as bringing about a major change in competitiveness between individuals and groups, to be able to do so requires sufficient information and data to be analyzed further. In this case STT Wastukancana Purwakarta is under the auspices of Bunga Bangsa Foundation, seeing that STT Wastukancana Purwakarta students have several obstacles in their final project, one of which is difficult in determining the topic of the thesis title to be made so that sometimes the topic of the thesis title taken is not in accordance with their abilities each student. This problem can be overcome by applying the clustering method. The analytical method used is Knowledge Discovery in Database (KDD). The method of grouping students uses the clustering method and the K-Means algorithm as a clustering calculation where the Clustering aims to divide students into clusters based on grades obtained from semester 1 to 7, so as to produce student recommendations in taking thesis topics. The tool used to implement the algorithm is Rapidminer. The results of this study are grouping students according to their expertise, which is obtained based on the cluster that has the highest score and is dominated by the most subjects according to the subjects that have been grouped by each expertise. So, the results of this cluster are used as a reference for students to take the thesis title topic.
Copyrights © 2020