Customer is a very important asset for retail companies. This is the reason why retail companies should plan and use a fairly clear strategy in treating customers. With the large number of customers, the problem that must be faced is how to identify the characteristics of all customers and able to retain existing customers in order not to stop buying and moving to a competitor retail company. By applying the concept of CRM, a company can identify customers by segmenting customers while also being able to implement customer retention programs by predicting potential churn on each customer class. The data used comes from UD.Mawar Sari. Customer segmentation process uses RFM model to get customer class. UD. Mawar Sari customer class is dormant, everyday, golden and superstar. The construction of prediction models using the Decision Tree C4.5. The application of the prediction model obtains performance results, that is: Dormant: Recall 97.51%, Precision 75.18%, Accuracy 76.18%. Everyday: Recall 100%, Precision 99.04%, Accuracy 99.04%. Golden: Recall 100%, Precision 98.84%, Accuracy 98.84%. Superstar: Recall 96.15%, Precision 99.43%, Accuracy 95.63%. Results of the evaluation with confusion matrix it can be concluded that the dormant customer class is a potentially churn customer class.
                        
                        
                        
                        
                            
                                Copyrights © 2018