The paper has demonstrated the first order surface grating fiber coupler under the period chirp and apodization functions variations effects. The Fiber coupler transmittivity/reflectivity, the fiber coupler grating index change and the fiber coupler mesh transmission cross-section are clarified against the grating length with the quadratic/cubic root period chirp and Gaussian/uniform apodization functions. The fiber coupler delay and dispersion are simulated and demonstrated with grating wavelength with quadratic/cubic root period chirp and Gaussian/uniform apodization function. As well as the fiber coupler output pulse intensity is simulated against the time period with the quadratic/cubic root period chirp and Gaussian/uniform apodization function. The fiber coupler peak intensity variations against the transmission range variations is also demonstrated by OptiGrating simulation software.
Copyrights © 2022