JIKO (Jurnal Informatika dan Komputer)
Vol 6, No 1 (2022): ReBorn - February 2022

Pengaruh Nilai Hidden layer dan Learning rate Terhadap Kecepatan Pelatihan Jaringan Saraf Tiruan Backpropagation

supriyanto supriyanto (Unknown)
Sunardi Sunardi (Unknown)
imam riadi (Unknown)



Article Info

Publish Date
21 Feb 2022

Abstract

Jaringan Saraf Tiruan (JST) merupakan salah satu metode yang dapat digunakan untuk memecahkan masalah proses prediksi.  JST berfungsi sebagai pengganti saraf dan otak manusia dengan kemampuan belajar dan generalisasi dengan cepat dalam pengenalan pola. JST backpropagation dalam proses pelatihan membutuhkan kombinasi parameter yang tepat seperti hidden layer, learning rate, dan jumlah iterasi karena terkait dengan waktu proses pelatihan dan galat yang akan dihasilkan. Pada penelitian ini dilakukan pengujian terhadap parameter masukan dari kombinasi nilai hidden layer, learning rate dan jumlah iterasi untuk mengetahui sejauh mana waktu yang dibutuhkan oleh JST backpropagation dalam melakukan pelatihan terhadap data masukan. Hasil dari pelatihan jaringan, Parameter jumlah nilai hidden layer sebesar 12 neuron untuk mendapatkan waktu pelatihan yang cepat sebanyak 3 menit 44 detik dengan galat MSE 1,654151. Pada Jumlah iterasi yang dibutuhkan dengan arsitektur hidden layer 12 neuron, dibutuhkan sebanyak 100000 iterasi dengan waktu pelatihan 21 menit 52 detik. Sedangkan pada parameter learning rate menggunakan 12  neuron dan iterasi sebesar 100000, nilai leraning rate rate yang tepat untuk pelatihan sebesar 0,5 dengan waktu yang dibutuhkan untuk pelatihan 18 menit 35 detik dengan galat MSE 0,302868.

Copyrights © 2022






Journal Info

Abbrev

jiko

Publisher

Subject

Computer Science & IT

Description

JIKO (Jurnal Informatika dan Komputer) is a scientific journal published by Lembaga Penelitian dan Pengabdian Masyarakat of Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM) Yogyakarta, Indonesia. First published in 2016 for a printed and online version. We receive original research ...