International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

Enhancing multi-class web video categorization model using machine and deep learning approaches

Wael M. S. Yafooz (Taibah University)
Abdullah Alsaeedi (Taibah University)
Reyadh Alluhaibi (Taibah University)
Abdel-Hamid Mohamed Emara (Taibah University and Al- Azhar University)



Article Info

Publish Date
01 Jun 2022

Abstract

With today’s digital revolution, many people communicate and collaborate in cyberspace. Users rely on social media platforms, such as Facebook, YouTube and Twitter, all of which exert a considerable impact on human lives. In particular, watching videos has become more preferable than simply browsing the internet because of many reasons. However, difficulties arise when searching for specific videos accurately in the same domains, such as entertainment, politics, education, video and TV shows. This problem can be solved through web video categorization (WVC) approaches that utilize video textual information, visual features, or audio approaches. However, retrieving or obtaining videos with similar content with high accuracy is challenging. Therefore, this paper proposes a novel mode for enhancing WVC that is based on user comments and weighted features from video descriptions. Specifically, this model uses supervised learning, along with machine learning classifiers (MLCs) and deep learning (DL) models. Two experiments are conducted on the proposed balanced dataset on the basis of the two proposed algorithms based on multi-classes, namely, education, politics, health and sports. The model achieves high accuracy rates of 97% and 99% by using MLCs and DL models that are based on artificial neural network (ANN) and long short-term memory (LSTM), respectively.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...