International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

Improvement of dielectric strength and properties of cross-linked polyethylene using nano filler

Sherif Essawi (Ain Shams University)
Loai Nasrat (Aswan University)
Hanafy Ismail (Ain Shams University)
Jeannette Asaad (National Research Centre)



Article Info

Publish Date
01 Jun 2022

Abstract

Power cables insulated with cross-linked polyethylene (XLPE) have been utilized worldwide for distribution and transmission networks. There are several advantages for this type of insulation; it has better electrical, thermal, and mechanical properties compared to other types of insulation in medium and high voltage networks. Many studies aimed to improve the XLPE characteristics through introducing nano fillers to the XLPE matrix. Therefore, this paper investigates the AC (HV) breakdown voltage (dielectric strength) of XLPE after adding nano-sized zeolite (Z) fillers with various concentrations of 1 wt%, 3 wt%, 5 wt% and 7 wt%. The dielectric strength is tested in different temperatures of 30 ⁰C and 250 ⁰C. Additionally, it was tested in low and high salty wet conditions. The dielectric strength of the XLPE has been enhanced by inducing the Z nano filler. The results of the tests were used to train the artificial neural network (ANN) to calculate the dielectric strength of XLPE composites with different concentrations of nano Z filler under different weathering conditions. Thermogravimetric analysis, tensile strength, and elongation at break tests were applied to check the thermal and mechanical characteristics of the samples. Experimental findings show that the optimum concentration of nano Z is 3.64 wt% to enhance the electrical, thermal, and mechanical properties.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...