International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

Six skin diseases classification using deep convolutional neural network

Ramzi Saifan (University of Jordan)
Fahed Jubair (University of Jordan)



Article Info

Publish Date
01 Jun 2022

Abstract

Smart imaging-based medical classification systems help the human diagnose the diseases and make better decisions about patient health. Recently, computer-aided classification of skin diseases has been a popular research area due to its importance in the early detection of skin diseases. This paper presents at its core, a system that exploits convolutional neural networks to classify color images of skin lesions. It relies on a pre-trained deep convolutional neural network to classify between six skin diseases: acne, athlete’s foot, chickenpox, eczema, skin cancer, and vitiligo. Additionally, we constructed a dataset of 3000 colored images from several online datasets and the Internet. Experimental results are encouraging, where the proposed model achieved an accuracy of 81.75%, which is higher than the state of the art researches in this field. This accuracy was calculated using the holdout method, where 90% of the images were used for training, and 10% of the images were used for out-of-sample accuracy testing.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...