International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

Peanut leaf spot disease identification using pre-trained deep convolutional neural network

Urbano B. Patayon (Jose Rizal Memorial State University)
Renato V. Crisostomo (Mindanao State University)



Article Info

Publish Date
01 Jun 2022

Abstract

Reduction of quality and quantity of agricultural products, particularly peanut or groundnut, is usually associated with disease. This could be solved through automatic identification and diagnoses using deep learning. However, this technology is not yet explored and examined in the case of peanut leaf spot disease due to some aspects, such as the availability of sufficient data to be used for training and testing the model. This study is intended to explore the use of pre-trained visual geometry group–16 (VGG16), visual geometry group–19 (VGG19), InceptionV3, MobileNet, DenseNet, Xception, InceptionResNetV2, and ResNet50 architectures and deep learning optimizers such as stochastic gradient descent (SGD) with Momentum, adaptive moment estimation (Adam), root mean square propagation (RMSProp), and adaptive gradient algorithm (Adagrad) in creating a model that can identify leaf spot disease by using a total of 1,000 images of leaves captured using a mobile camera. Confusion matrix was used to assess the accuracy and precision of the results. The result of the study shows that DenseNet-169 trained using SGD with momentum, Adam, and RMSProp attained the highest accuracy of 98%, while DenseNet-169 trained using RMSProp achieved the highest precision of 98% among pre-trained deep convolutional neural network architectures. Furthermore, this result could be beneficial in agricultural automation and disease identification systems for peanut or groundnut plants.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...