International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

Depth-DensePose: an efficient densely connected deep learning model for camera-based localization

Amr Abozeid (Jouf University)
Hesham Farouk (Department of Computers and Systems, Electronics Research Institute)
Samia Mashali (Department of Computers and Systems, Electronics Research Institute)



Article Info

Publish Date
01 Jun 2022

Abstract

Camera/image-based localization is important for many emerging applications such as augmented reality (AR), mixed reality, robotics, and self-driving. Camera localization is the problem of estimating both camera position and orientation with respect to an object. Use cases for camera localization depend on two key factors: accuracy and speed (latency). Therefore, this paper proposes Depth-DensePose, an efficient deep learning model for 6-degrees-of-freedom (6-DoF) camera-based localization. The Depth-DensePose utilizes the advantages of both DenseNets and adapted depthwise separable convolution (DS-Conv) to build a deeper and more efficient network. The proposed model consists of iterative depth-dense blocks. Each depth dense block contains two adapted DS-Conv with two kernel sizes 3 and 5, which are useful to retain both low-level as well as high-level features. We evaluate the proposed Depth-DensePose on the Cambridge Landmarks dataset, which shows that the Depth-DensePose outperforms the performance of related deep learning models for camera based localization. Furthermore, extensive experiments were conducted which proven the adapted DS-Conv is more efficient than the standard convolution. Especially, in terms of memory and processing time which is important to real-time and mobile applications.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...