International Journal of Electrical and Computer Engineering
Vol 12, No 4: August 2022

Internet of things based electrocardiogram monitoring system using machine learning algorithm

Rahaman, Md. Obaidur (Unknown)
Mehedi Shamrat, F. M. Javed (Unknown)
Abul Kashem, Mohammod (Unknown)
Fahmida Akter, Most. (Unknown)
Chakraborty, Sovon (Unknown)
Ahmed, Marzia (Unknown)
Mustary, Shobnom (Unknown)



Article Info

Publish Date
01 Aug 2022

Abstract

In Bangladesh’s rural regions, almost 30% of the population lives in poverty. Rural residents also have restricted access to nursing and diagnostic services due to obsolete healthcare infrastructure. Consequently, as cardiac failure occurs, they usually fail to call the services and adopt the facilities. The internet of things (IoT) offers a massive advantage in addressing cardiac problems. This study proposed a smart IoT-based electrocardiogram (ECG) monitoring system for heart patients. The system is divided into several parts: ECG sensing network (data acquisition), IoT cloud (data transmission), result analysis (data prediction) and monetization. P, Q, R, S, and T are ECG signal properties fetched, pre-processed, analyzed and predicted to age level for future health management. ECG data are saved in the cloud and accessible via message queuing telemetry transport (MQTT) and hypertext transfer protocol (HTTP) servers. The linear regression method is utilized to determine the impact of electrocardiogram signal characteristics and error rate. The prediction was made to see how much variation there was in PQRST regularity and its sufficiency to be utilized in an ECG monitoring device. Recognizing the quality parameter values, acceptable outcomes are achieved. The proposed system will diminish future medical costs and difficulties for heart patients.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...