International Journal of Electrical and Computer Engineering
Vol 12, No 4: August 2022

Automatic fabric defect detection employing deep learning

Aafaf Beljadid (University Sultan Moulay Slimane)
Adil Tannouche (University Sultan Moulay Slimane)
Abdessamad Balouki (University Sultan Moulay Slimane)



Article Info

Publish Date
01 Aug 2022

Abstract

A major issue for fabric quality inspection is in the detection of defaults, it has become an extremely challenging goal for the textile industry to minimize costs in both production and quality inspection. The quality inspection is currently done manually by professionals; hence the need for the implementation of a fast, powerful, robust, and intelligent machine vision system in order to achieve high global quality, uniformity, and consistency of fabrics and to increase productivity. Consequently, the automatic inspection control process can improve productivity and enhance product quality. This article describes the approach used in developing a convolutional neural network for identifying fabric defects from input images of fabric surfaces. The proposed neural network is a pre-trained convolutional model ‘DetectNet’, it was adapted to be more efficient to the fabric image feature extraction. The developed model is capable of successfully distinguishing between defective fabric and non-defective with 93% accuracy for the first model and 96% for the second model.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...