International Journal of Electrical and Computer Engineering
Vol 12, No 3: June 2022

A feature selection method based on auto-encoder for internet of things intrusion detection

Ahmed Fahad Alshudukhi (Universiti Kebangsaan Malaysia)
Saif Ahmed Jabbar (Universiti Kebangsaan Malaysia)
Basel Alshaikhdeeb (Universiti Kebangsaan Malaysia)



Article Info

Publish Date
01 Jun 2022

Abstract

The evolution in gadgets where various devices have become connected to the internet such as sensors, cameras, smartphones, and others, has led to the emergence of internet-of-things (IoT). As any network, security is the main issue facing IoT. Several studies addressed the intrusion detection task in IoT. The majority of these studies utilized different statistical and bio-inspired feature selection techniques. Deep learning is a family of techniques that demonstrated remarkable performance in the field of classification. The emergence of deep learning techniques has led to configure new neural network architectures that is designed for the feature selection task. This study proposes a deep learning architecture known as auto-encoder (AE) for the task of feature selection in IoT intrusion detection. A benchmark dataset for IoT intrusions has been considered in the experiments. The proposed AE has been carried out for the feature selection task along with a simple neural network (NN) architecture for the classification task. Experimental results showed that the proposed AE showed an accuracy of 99.97% with a false alarm rate (FAR) of 1.0. The comparison against the state of the art proves the efficacy of AE.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...