IAES International Journal of Robotics and Automation (IJRA)
Vol 11, No 2: June 2022

Modified power rate sliding mode control for robot manipulator based on particle swarm optimization

Sinan, Saif (Unknown)
Fareh, Raouf (Unknown)
Hamdan, Sadeque (Unknown)
Saad, Maarouf (Unknown)
Bettayeb, Maamar (Unknown)



Article Info

Publish Date
01 Jun 2022

Abstract

This work suggests an optimized improved power rate sliding mode control (PRSMC) to control a 4-degrees of freedom (DOF) manipulator in joint space as well as workspace. The proposed sliding mode control (SMC) aims to improve the reaching mode and to employ an optimization method to tune the control parameters that operate the robotic manipulator adaptively. Inverse kinematics is used to obtain the joint desired angles from the end effector desired position, while forward kinematics is used to obtain the real Cartesian position and orientation of the end effector from the real joint angles. The proposed enhancements to the SMC involve the use of the hyperbolic tangent function in the control law to improve the reaching mode. Added to that, particle swarm optimization (PSO) is used to tune the parameters of the improved SMC. Furthermore, the Lyapunov function is utilized to analyze the stability of the closed-loop system. The proposed enhanced sliding mode combined with the optimization method is applied experimentally on a 4-DOF manipulator to prove the feasibility and efficiency of the proposed controller. Finally, the performance of the suggested control scheme is compared with the conventional power rate SMC in order to demonstrate the enhanced performance of the suggested method.

Copyrights © 2022






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...