IAES International Journal of Robotics and Automation (IJRA)
Vol 11, No 2: June 2022

An efficient regression method for 3D object localization in machine vision systems

Van, Xiem Hoang (Unknown)
Do, Nam (Unknown)



Article Info

Publish Date
01 Jun 2022

Abstract

Machine vision or robot vision plays is playing an important role in many industrial systems and has a lot of potential applications in the future of automation tasks such as in-house robot managing, swarm robotics controlling, product line observing, and robot grasping. One of the most common yet challenging tasks in machine vision is 3D object localization. Although several works have been introduced and achieved good results for object localization, there is still room to further improve the object location determination. In this paper, we introduce a novel 3D object localization algorithm in which a checkerboard pattern-based method is used to initialize the object location and followed by a regression model to regularize the object location. The proposed object localization is employed in a low-cost robot grasping system where only one simple 2D camera is used. Experimental results showed that the proposed algorithm significantly improves the accuracy of the object localization when compared to the relevant works.

Copyrights © 2022






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...