IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 11, No 2: June 2022

Solving flexible job-shop scheduling problem using harmony search-based meerkat clan algorithm

Muna Mohammed Jawad (University of Technology-Iraq)
Muhanad Tahrir Younis (Mustansiriyah University)
Ahmed T. Sadiq (University of Technology-Iraq)



Article Info

Publish Date
01 Jun 2022

Abstract

The classical job shop scheduling (JSS) problem can be extended by allowing processing of an operation by any machine from a given set. This type of scheduling is known as flexible job shop scheduling (FJSS) problem. It incorporates all the difficulties and complexities of its predecessor classical problem. However, it is more complex as it is required to determine the assignment of operations to the machine. Swarm intelligence techniques proved their effectiveness in solving a wide range of complex NP-Hard real world problems. One of these techniques is the meerkat clan algorithm (MCA) that has been successfully applied to various optimization problems. This paper presents a modified MCA for solving the FJSS problem. The modification is based on using harmony search (HS). The introduction of HS provides more exploitation and intensification. HS generates various solutions, which are provided to the MCA. As a result, the exploitation of the local optimum is increased, which in turn increases the convergence rate. The experimental results show that the improved method achieves higher quality schedules. Additionally, the convergence rate is speeded up compared with the standalone algorithm. This gives the proposed method the superiority over the original algorithm.

Copyrights © 2022






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...