BIMASTER
Vol 11, No 2 (2022): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya

TRANSFORMASI LAPLACE UNTUK MENYELESAIKAN GENERALISASI INTEGRAL FRESNEL

Fransiskus Fran, Asmawati Wanazizah, Mariatul Kiftiah, (Unknown)



Article Info

Publish Date
20 Mar 2022

Abstract

Integral Fresnel adalah integral dengan bentuk S(u)=\int\limits_{\0}^{\u}{sin(x^2)\,dx dan C(u)=\int\limits_{\0}^{\u}{cos(x^2)\,dx denganu∊ℝ. Kedua integral tersebut diperumum menjadi \int\limits_{\0}^{\infty}{sin(t(x^p)) \,dx dan \int\limits_{\0}^{\infty}{cos(t(x^p))\,dx denganp>1, dan t∈ ℝ^+ yang selanjutnya dinamakan generalisasi integral Fresnel. Dalam penelitian ini, dicari penyelesaian dari generalisasi integral Fresnel dengan menggunakan pendekatan transformasi Laplace. Penyelesaian generalisasi integral Fresnel diawali dengan memisalkan suatu fungsi f(t)=\int\limits_{\0}^{\infty}{sin (t(x^p))\,dx  dan g(t)=\int\limits_{\0}^{\infty}{cos(t(x^p))\,dx sehingga dapat diubah kebentuk transformasi Laplace. Kemudian dilanjutkan dengan menggunakan definisi dan rumus-rumus transformasi Laplace, serta sifat-sifat fungsi Gamma dan Beta. Selanjutnya mentransformasikan kembali ke fungsi awal menggunakan invers transformasi Laplace. Hasil penelitian menunjukan bahwa transformasi Laplace dapat digunakan untuk mencari penyelesaian numerik generalisasi integral Fresnel dengan rumus \int\limits_{\0}^{\infty}{sin(t(x^p))\,dx=∏sec(∏/2p)/(2p(t^(1/p)))Γ(1-(1/p)) dan \int\limits_{\0}^{\infty}{sin(t(x^p))\,dx=∏csc(∏/2p)/(2p(t^(1/p)))Γ(1-(1/p)). Kata Kunci : Integral Fresnel, Generalisasi Integral Fresnel, Transformasi Laplace.

Copyrights © 2022






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...