Jurnal Gaussian
Vol 10, No 4 (2021): Jurnal Gaussian

GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION UNTUK MENANGANI OVERDISPERSI PADA JUMLAH PENDUDUK MISKIN

Nova Delvia (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Mustafid Mustafid (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Hasbi Yasin (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
31 Dec 2021

Abstract

Poverty is a condition that is often associated with needs, difficulties an deficiencies in various life circumstances. The number of poor people in Indonesia increase in 2020. This research focus on modelling the number of poor people in Indonesia using Geographically Weighted Negative Binomial Regression (GWNBR) method. The number of poor people is count data, so analysis used to model the count data is poisson regression.  If there is overdispersion, it can be overcome using negative binomial regression. Meanwhile to see the spatial effect, we can use the Geographically Weighted Negative Binomial Regression method. GWNBR uses a adaptive bisquare kernel for weighting function. GWNBR is better at modelling the number of poor people because it has the smallest AIC value than poisson regression and negative binomial regression. While the GWNBR method obtained 13 groups of province based on significant variables.      

Copyrights © 2021






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...