Jurnal Gaussian
Vol 10, No 4 (2021): Jurnal Gaussian

PERBANDINGAN MODEL REGRESI BINOMIAL NEGATIF BIVARIAT DENGAN MODEL GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL BIVARIAT REGRESSION (GWNBBR) PADA KASUS ANGKA KEMATIAN BAYI DAN KEMATIAN IBU DI JAWA TENGAH

Yashmine Noor Islami (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Dwi Ispriyanti (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Puspita Kartikasari (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
31 Dec 2021

Abstract

Infant mortality (0-11 months) and maternal mortality (during pregnancy, childbirth, and postpartum) are significant indicators in determining the level of public health. Central Java Province which has 35 regencies/cities is included in the top five regions with the highest number of infant and maternal mortality in Indonesia. The data characteristics of the number of infants and maternal mortality are count data. Therefore, the Poisson Regression method can be used to analyze the factors that influence the number of infants and maternal mortality. In Poisson regression analysis, there must be a fulfilled assumption, called equidispersion. Frequently, the variance of count data is greater than the mean, which is known as the overdispersion. The research, binomial negative bivariate regression is used as a solutions to overcome the problem of overdispersion in poisson regression. This method produce a global model. In reality, the geographical, socio-cultural, and economic conditions of each region will be different. This illustrates the effect of spatial heterogeneity, so it needs to be developed into Geographically Weighted Negative Binomial Bivariate Regression (GWNBBR). The model of GWNBBR provides weighting based on the position or distance from one observation area to another. Significant variables for modeling infant mortality cases included the percentage of obstetric complications treated (X1), the percentage of infants who were exclusively breastfed (X3), and the percentage of poor people (X5). Significant variable for modeling maternal mortality cases is the percentage of poor people (X5). Based on the AIC value, GWNBBR model is better than binomial negatif bivariat regression model because it has a smaller AIC value. 

Copyrights © 2021






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...