Jurnal Teknologi dan Sistem Komputer
Volume 10, Issue 1, Year 2022 (January 2022)

Prediksi interaksi protein-protein berbasis sekuens protein menggunakan fitur autocorrelation dan machine learning

Syahid Abdullah (Department of Computer Science, IPB University. Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680|IPB University)
Wisnu Ananta Kusuma (Department of Computer Science, IPB University. Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680|IPB University Tropical Biopharmaca Research Center, IPB University. Jl. Taman Kencana No. 3, Bogor 16128|IPB University)
Sony Hartono Wijaya (Department of Computer Science, IPB University. Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680|IPB University)



Article Info

Publish Date
31 Jan 2022

Abstract

Protein-protein interaction (PPI) can define a protein's function by knowing the protein's position in a complex network of protein interactions. The number of PPIs that have been identified is relatively small. Therefore, several studies were conducted to predict PPI using protein sequence information. This research compares the performance of three autocorrelation methods: Moran, Geary, and Moreau-Broto, in extracting protein sequence features to predict PPI. The results of the three extractions are then applied to three machine learning algorithms, namely k-Nearest Neighbor (KNN), Random Forest, and Support Vector Machine (SVM). The prediction models with the three autocorrelation methods can produce predictions with high average accuracy, which is 95.34% for Geary in KNN, 97.43% for Geary in RF, and 97.11% for Geary and Moran in SVM. In addition, the interacting protein pairs tend to have similar autocorrelation characteristics. Thus, the autocorrelation method can be used to predict PPI well.

Copyrights © 2022






Journal Info

Abbrev

JTSISKOM

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan ...