JIKSI (Jurnal Ilmu Komputer dan Sistem Informasi)
Vol 10, No 1 (2022): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI

KLASIFIKASI JENIS PENYAKIT PADA DAUN TOMAT DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

El Primo Gemilang (Unknown)
Chairisni Lubis (Unknown)



Article Info

Publish Date
04 Mar 2022

Abstract

Tomato is one of the farming commodities in Indonesia, easy to plant but easy to get sick. Analizing the disease in plain view still not yet achieve high accuracy result, so we use the help of Convolutional Neural Network (CNN) algorithm. This research is quantitative, with image of a single tomato leaf that is infected as the input. The constructed model gains an accuracy of 58.33% with 12.716 image consisting of Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Target Spot, Spider Mites, Mosaic Virus, Yellow Leaf Curl Virus, Septoria Leaf Spot and healthy leaf. The conclusion from this research is that classification of Tomato leaf disease using CNN can help achieve a higher accuracy but using LeNet-5 as the model architecture is not very effective.

Copyrights © 2022






Journal Info

Abbrev

jiksi

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Jurnal Ilmu Komputer dan Sistem Informasi (JIKSI) diterbitkan oleh Fakultas Teknologi Informasi Universitas Tarumanagara (FTI Untar) Jakarta sebagai media publikasi karya ilmiah mahasiswa program studi Teknik Informatika dan Sistem Informasi FTI Untar. Karya-karya ilmiah yang dihasilkan berupa hasil ...