Indonesian Journal of Electrical Engineering and Computer Science
Vol 26, No 2: May 2022

Convolution neural network model for fundus photograph quality assessment

Sinan S. Mohammed Sheet (Northern Technical University)
Tian-Swee Tan (Universiti Teknologi Malaysia (UTM))
Muhammad Amir Bin As'ari (Universiti Teknologi Malaysia (UTM))
Wan Hazabbah Wan Hitam (Universiti Sains Malaysia (USM))
Qi Zhe Ngoo (University Sains Malaysia (USM))
Joyce S.Y. Sia (Universiti Teknologi Malaysia (UTM))
Kelvin Ling Chia Hiik (Universiti Teknologi Malaysia (UTM))



Article Info

Publish Date
01 May 2022

Abstract

The excellent quality of color fundus photograph is crucial for the ophthalmologist to process the correct diagnosis and for convolutional neural network (CNN) models to optimize output classification. As a result of main causes as acquire devises efficiency and experience of a physician most fundus photographs can have uneven illuminance, blur, and bad contrast, in addition to micro-features of retinal diseases, which need to force their contrast. Fundus photograph quality assessment method is proposed to find out the perfect enhanced color fundus Technique in fundoscopy photographs-based CNN model. Five photograph quality measurements, in addition to five CNN metrics, were used as standard in this study. In this research innovative approach combining photograph quality measurement and CNN metrics analysis is proposed to find out the best enhance method that is set for the multiclass CNN model. The contrast enhancement techniques are evaluated using 267 color fundus photographs divided into three retina diseases cases were downloaded from the open-source database “FIGSHARE”. The study outcome showed that the presented system (single-CNN) can determine well the contrast enhancement method, as well as the low-quality fundus photograph then it can boost CNN metrics to achieve superior.

Copyrights © 2022