International Journal of Artificial Intelligence Research
Vol 6, No 2 (2022): Desember 2022

Defining Common Inter-Session and Inter-Subject EEG Channels Using Spatial Selection Method

Hilman Fauzi (Telkom University)
Tadayasu Komura (Tokyo City University)
Masaki Kyoso (Tokyo City University)
Mohd. Ibrahim Shapiai (Universiti Teknologi Malaysia)
Yasmin Mumtaz (Telkom University)



Article Info

Publish Date
01 Dec 2022

Abstract

Redundancy of information on brain signals can lead to reduce brain-computer interface (BCI) performance in applications. To overcome this, EEG channel selection is performed to reduce and/or eliminate a number of channels with irrelevant information. In the previous studies, there is energy calculation methods that have been proposed to perform EEG channel selection to improve BCI performance in classifying the brain command of motor imagery stimulation. In this study, channel selection scheme on motor movement signal will be experimented by using spatial selection method. This study performs the common active channel mechanism that divided into two parts: 1) common active channels between sessions, which known as common Inter-session channels and common active channels. These two techniques can be used by all subjects to interpret motor movement type known as common Inter-subject channels. In order to validate the performance of the proposed framework, CSP (common spatial pattern) is used as a feature extraction method and k-NN with k = 3 as the classification method. The obtained results shows that the proposed channel selection technique is able to choose common active channels in five combination numbers on Inter-sessions and Inter-subjects of the acquired EEG signals. Both types of common active channels are proven to improve BCI performance with an accuracy increase of up to 66%.

Copyrights © 2022






Journal Info

Abbrev

IJAIR

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal Of Artificial Intelligence Research (IJAIR) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics of Artificial intelligent Research which covers four (4) ...