Tropical Aquatic and Soil Pollution
Vol. 1 Iss. 2 (2021)

Decolorization of Remazol Brilliant Violet 5R and Procion Red MX-5B by Trichoderma Species

Vanessa Jane Zainip (Faculty of Engineering, Universiti Teknologi Malaysia)
Liyana Amalina Adnan (Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Bandar baru Nilai, Nilai 71800, Malaysia)
Mohamed Soliman Elshikh (Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia)



Article Info

Publish Date
25 Oct 2021

Abstract

Industrial wastewater including dye waste disposal, has been released in a massive amount and is difficult to degrade, especially synthetic dyes. In this study, 10 different types of fungi were isolated from a decayed wood in UTM forest and were labelled as S1-S10. Two dyes were chosen for this study, which were Procion Red MX-5B (PRMX5B) and Remazol Brilliant Violet 5R (RBV5R). These fungi were screened for their ability to decolor both dyes and further tested for their ability to decolor the dyes in liquid medium under several parameters; carbon and nitrogen sources, initial pH value, temperature, and agitation. S1 decolorized PRMX5B efficiently with the addition of glucose (45%), ammonium nitrate (61%), pH 3 (69%), temperature 37°C (49%), and agitation 100 rpm (69%), whereas S2 decolorized efficiently with the addition of glucose (60%), ammonium nitrate (49%), pH 3 (70%), temperature 37°C (46%), and agitation 100 rpm (74%). S1 demonstrated efficient decolorization of RBV5R with the addition of glucose (80%), ammonium nitrate (62%), pH 3, temperature 37°C (75%), and agitation 100 rpm (90%), whereas S2 demonstrated efficient decolorization with the addition of glucose (52%), ammonium nitrate (67%), pH 3, temperature 37°C (75%), and agitation 100 rpm (71%).The percentage of decolorization of dyes was measured by using a UV-Vis spectrophotometer. These fungi were then identified using the 18sr RNA method. Based on macroscopic and microscopic characteristics and a polygenetic tree, fungi S1 belong to Trichoderma koningiopsis and fungi S2 belong to Trichoderma atroviride. 

Copyrights © 2021






Journal Info

Abbrev

tasp

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry Engineering

Description

The journal is intended to provide a platform for research communities from different disciplines to disseminate, exchange and communicate all aspects of aquatic and soil environment, all aspects of pollution, and solutions to pollution in the biosphere. Topics of specific interest include, but are ...