Jurnal Ilmiah Informatika Komputer
Vol 27, No 1 (2022)

PENDETEKSIAN OBJEK PADA CITRA HEWAN KARNIVORA DAN HERBIVORA MENGGUNAKAN FASTER R-CNN

Sherien Trisnawaty Eka Putri (Universitas Gunadarma)
Achmad Fahrurozi (Universitas Gunadarma)



Article Info

Publish Date
12 May 2022

Abstract

Penelitian ini bertujuan menghasilkan sistem pendeteksian objek dengan menggunakan Faster R-CNN untuk mengklasifikasikan jenis hewan dari kelompok hewan karnivora dan herbivora berbasis citra. Pembuatan program dalam penelitian ini menggunakan Faster R-CNN dengan arsitektur Inception V2 dan Google Collab pada tahap pelatihan. Data yang digunakan yaitu 2000 citra hewan yang diambil secara random menggunakan Chrome extension dan dilabelkan secara manual. Hasil akuisisi citra memberikan variasi sudut pengambilan gambar, variasi jarak pengambilan, dan variasi jumlah objek dalam citra. Pembuatan sistem pendeteksian objek ini meliputi tahap pelatihan untuk membentuk model Faster R-CNN, tahap uji coba, dan pengukuran performa sistem pendeteksian objek yang dihasilkam. Berdasarkan hasil implementasi dan uji coba, disimpulkan bahwa sistem ini dapat mengklasifikasikan jenis hewan karnivora dan herbivora dengan total loss model hasil pelatihan berada pada 0.06 dan rata-rata tingkat akurasi sebesar 89%. Hasil perhitungan Recall dan Precision menunjukkan bahwa  performa dari sistem klasifikasi yang dihasilkan sangat baik, dengan nilai Recall 100% terdapat pada kelompok citra hewan Cheetah, Eagle, Komodo, Shark, Tiger, Bull, Guineapig, dan Zebra.

Copyrights © 2022






Journal Info

Abbrev

infokom

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

This journal is published periodically three times a year, April, August, and December. It publishes a broad range of research articles on Information Technology and Communication, whether in Indonesian Language or ...