Let R be a semiprime ring, I a non-zero ideal of R and α be an automorphism of R. A map F : R to R is said to be a multiplicative (generalized)(α, 1)-derivation associated with a map d : R to R such that F (xy) = F (x) α (y) + xd (y), for all x, y in R. In the present paper, we shall prove that R contains a non-zero central ideal if any one of the following holds: (i) F [x, y] ± [x,y] =0; (ii) F (xoy)±α(xoy) = 0; (iii) F [x, y] = [F (x) , y]α;1 ; (iv) F [x, y] =(F (x) oy)α;1 ; (v) F (xoy) = [F(x) , y]α;1 and (vi)F (xoy) = (F (x) oy)α;1, for all x, y in I.
                        
                        
                        
                        
                            
                                Copyrights © 2022