Journal of ICT Research and Applications
Vol. 11 No. 3 (2017)

Improving Floating Search Feature Selection using Genetic Algorithm

Kanyanut Homsapaya (Graduate School of Applied Statistics, National Institute of Development Administration, Bangkok,)
Ohm Sornil (Graduate School of Applied Statistics, National Institute of Development Administration, Bangkok,)



Article Info

Publish Date
22 Dec 2017

Abstract

Classification, a process for predicting the class of a given input data, is one of the most fundamental tasks in data mining. Classification performance is negatively affected by noisy data and therefore selecting features relevant to the problem is a critical step in classification, especially when applied to large datasets. In this article, a novel filter-based floating search technique for feature selection to select an optimal set of features for classification purposes is proposed. A genetic algorithm is employed to improve the quality of the features selected by the floating search method in each iteration. A criterion function is applied to select relevant and high-quality features that can improve classification accuracy. The proposed method was evaluated using 20 standard machine learning datasets of various size and complexity. The results show that the proposed method is effective in general across different classifiers and performs well in comparison with recently reported techniques. In addition, the application of the proposed method with support vector machine provides the best performance among the classifiers studied and outperformed previous researches with the majority of data sets.

Copyrights © 2017






Journal Info

Abbrev

jictra

Publisher

Subject

Computer Science & IT

Description

Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet ...