Journal of ICT Research and Applications
Vol. 13 No. 2 (2019)

Identifying Fake Facebook Profiles Using Data Mining Techniques

Mohammed Basil Albayati (Department of Computer Science, Applied Science Private University, Al Arab St. 21 Amman 11931)
Ahmad Mousa Altamimi (Department of Computer Science, Applied Science Private University, Al Arab St. 21 Amman 11931)



Article Info

Publish Date
30 Sep 2019

Abstract

Facebook, the popular online social network, has changed our lives. Users can create a customized profile to share information about themselves with others that have agreed to be their 'friend'. However, this gigantic social network can be misused for carrying out malicious activities. Facebook faces the problem of fake accounts that enable scammers to violate users' privacy by creating fake profiles to infiltrate personal social networks. Many techniques have been proposed to address this issue. Most of them are based on detecting fake profiles/accounts, considering the characteristics of the user profile. However, the limited profile data made publicly available by Facebook makes it ineligible for applying the existing approaches in fake profile identification. Therefore, this research utilized data mining techniques to detect fake profiles. A set of supervised (ID3 decision tree, k-NN, and SVM) and unsupervised (k-Means and k-medoids) algorithms were applied to 12 behavioral and non-behavioral discriminative profile attributes from a dataset of 982 profiles. The results showed that ID3 had the highest accuracy in the detection process while k-medoids had the lowest accuracy.

Copyrights © 2019






Journal Info

Abbrev

jictra

Publisher

Subject

Computer Science & IT

Description

Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet ...