Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
Vol. 5 No. 1 (2021)

Prediksi Inflasi Indonesia Berdasarkan Fuzzy Ann Menggunakan Algoritma Genetika

Rifa'i, Anwar (Unknown)



Article Info

Publish Date
15 May 2022

Abstract

Monetary policy makers have a fear of inflation because it can trigger an increase in poverty and soar-ing budget uses. A high level of inflation will result in a country's economic collapse. Monetary policy making needs to be studied to prevent this. One effort that can be done is to predict the inflation that will occur. Inflation rate time series data can be used to predict future inflation rates. Pemangku kebijakan moneter memiliki ketakutan terhadap inflasi karena dapat memicu naiknya angka kemiskinan dan mel-onjaknya penggunaan anggaran. Tingkat Inflasi yang tinggi akan mengakibatkan jatuhnya perekonomian suatu negara. Pengambilan kebijakan moneter perlu dikaji secara mendalam untuk mencegah hal terse-but. Salah satu upaya yang dapat dilakukan adalah dengan melakukan prediksi inflasi yang akan terjadi. Data tingkat inflasi dari waktu ke waktu merupakan modal untuk melakukan prediksi tingkat inflasi pada waktu mendatang. Suatu prediksi yang baik memiliki nilai error yang kecil. Pada prediksi menggunakan fuzzy artificial neural network (Fuzzy ANN) metode backpropagation, nilai error dapat diperkecil dengan melakukan optimasi pada bobot yang dihasilkan. Pada penelitian ini, optimasi bobot Fuzzy AAN dil-akukan menggunakan algoritma genetika. Model prediksi yang diperoleh selanjutnya dievaluasi menggunakan MAPE untuk menentukan keakuratan prediksi. Hasil penelitian menunjukkan bahwa pred-iksi menggunakan backpropagation neural network dioptimasi menggunakan algoritma genetika (10,33%) lebih baik dibandingkan dengan prediksi menggunakan backpropagation neural network saja (11,67%). Setelah mengetahui bahwa kedua model memiliki hasil prediksi yang cukup baik, keakuratan kedua model dibandingkan menggunakan independent sampe t-test berdasarakan error yang dihasilkan. Hasilnya menjukkan bahwa pada tingkat kepercayaan 95% prediksi menggunakan Fuzzy ANN yang telah dioptimasi menggunakan algoritma genetika (M= 0,69, SD= 0,0421) lebih baik secara signifikan dibandingkan degan fuzzy ANN saja (M= 0.97, SD= 0,04634 ), t(22 )= 1.71714, p=0.013.

Copyrights © 2021






Journal Info

Abbrev

eltikom

Publisher

Subject

Aerospace Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

We are the Editor of Jurnal ELTIKOM, invites Mr. / Ms Lecturer, researcher and practitioner to be able to publish your paper on topics covering Electrical Engineering, Electronics Engineering, Telecommunications Engineering, Computer Engineering, Information ...