JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA)
Vol 6 No 1 (2022): April

Implementation of a Digital Microscope as an Identification System for Parasitic Worms in Cattle Based on Image Processing

Kunto Aji (Trunojoyo University Madura)
Miftachul Ulum (Trunojoyo University Madura)



Article Info

Publish Date
27 Apr 2022

Abstract

Masalah yang sering terjadi pada peternak sapi biasanya karena masalah penyakit yang secara langsung mempengaruhi kesehatan hewan ternak. Gangguan penyakit pada ternak merupakan salah satu faktor yang mempengaruhi pemeliharaan ternak. Hal ini menyebabkan peternak sapi merugi secara ekonomi karena kurangnya pemahaman tentang gejala penyakit sapi yang sulit dikenali. Salah satu gejala penyakit sapi yang sering terjadi disebabkan oleh infeksi cacing parasit. Untuk memastikan hewan tersebut sehat atau tidak, ditentukan dari hasil uji laboratorium melalui sampel fiskal segar sehingga penyakit sapi dapat diketahui secara akurat. Namun, keterbatasan fasilitas laboratorium, terutama di daerah pedesaan, membuat para peternak sulit untuk mengidentifikasi penyakit cacing parasit ini. Tujuan dari penelitian ini adalah menerapkan rancangan mikroskop digital sebagai alat untuk mengidentifikasi jenis telur cacing parasit pada sapi berdasarkan pengolahan citra menggunakan algoritma Yolo V3, sehingga diharapkan dapat membantu peternak dalam mendeteksi cacing parasit di ternak. Pada penelitian ini dirancang mikroskop digital sebagai alat untuk mengidentifikasi jenis telur cacing parasit pada sapi berdasarkan pengolahan citra. Sistem deteksi ini menggunakan mikroskop digital sebagai instrumen untuk mendeteksi keberadaan cacing parasit pada sampel uji. Mikroskop digital ini dilengkapi dengan kamera sehingga data deteksi dari proses pembacaan terhubung langsung ke alat pengolah data. Pada penelitian ini digunakan mekanisme pengolahan citra digital dengan metode Yolov3 yang berfungsi sebagai pengenal cacing parasit pada sapi. Algoritma ini bekerja dengan prinsip ekstraksi ciri yang digunakan untuk membedakan bentuk dan tekstur telur cacing parasit dengan menghitung sekumpulan piksel dengan nilai tertentu. Percobaan telah dilakukan terhadap 100 sampel kotoran sapi. Rata-rata akurasi sistem dalam mengidentifikasi adalah 78,42% untuk parasit dan 80,84% untuk non-parasitProblems that often occur in cattle farmers are usually due to disease problems that directly affect the health of livestock. One of the symptoms of cow disease that often occurs is caused by parasitic worm infection. To make sure the animal is healthy or not, it is determined from the results of laboratory tests through fiscal samples so that cow disease can be known accurately. However, limited laboratory facilities, especially in rural areas, make it difficult for farmers to identify this parasitic disease. The purpose of this study is to apply a digital microscope design as a tool to identify the type of parasitic worm eggs in cattle based on image processing using the Yolo V3 algorithm, so that it is hoped that it can assist farmers in detecting parasitic worms in livestock. In this study, a digital microscope was designed as a tool to identify the type of parasitic worm eggs in image processing cows. This detection system uses a digital microscope as an instrument to detect the presence of parasitic worms in the test sample. This digital microscope is equipped with a camera so that the detection of data from the reading process is directly connected to the data processing tool. In this study, a digital image processing mechanism with the Yolov3 method was used which functions as an identification of parasitic worms in cattle. This algorithm works with the principle of feature extraction which is used to distinguish the shape and texture of parasitic eggs by counting pixels with a certain value. Experiments have been carried out on 100 cow dung. The average accuracy of the system in identifying is 78.42% for parasites and 80.84% for non-parasites

Copyrights © 2022






Journal Info

Abbrev

jeeeu

Publisher

Subject

Electrical & Electronics Engineering

Description

Aim: to facilitate scholar, researchers, and teachers for publishing the original articles of review articles. Scope: Electrical, Electronica, Telecomunication, Medical Electronica, Digital system, Control ...