Pada penelitian ini penulis menggunakan algoritma Nguyen Widrow didalam Jaringan Syaraf Tiruan (JST) Backpropagation untuk pengenalan (recognition) gejala atau pola penyakit ginjal dan mempercepat mekanisme pembelajaran (training) berdasarkan gejala atau pola penyakit ginjal. Jaringan Syaraf Tiruan (JST) Backpropagation merupakan algoritma pembelajaran yang bersifat supervisi (supervised learning), yaitu pembelajaran yang membutuhkan pengawasan untuk pembelajarannya. didalam Jaringan Syaraf Tiruan (JST) Backpropagation terdapat data masukan (input) dan data keluaran (output) yang dipakai dalam pelatihan (training) sehingga diperoleh bobot (weight) yaitu dari unit masukan (Input) ke layer tersembunyi (Hidden Layer) dan dari layer tersembunyi (hidden layer) ke layer keluaran (Output). Pada penelitian ini, pengenalan pola penyakit ginjal terdapat 30 (tiga puluh) gejala dan 10 (sepuluh) macam penyakit ginjal. Data masukan (input) secara acak (random) dan data dilatih (training) menggunakan algoritma backpropagation yang pembobotannya menggunakan Nguyen Widrow. Dari penelitian yang dilakukan, keunggulan dari Jaringan Syaraf Tiruan (JST) Backpropagation secara acak lebih cepat dalam melakukan pelatihan (training) sedangkan dalam hal pengenalan (recognition) gejala atau pola penyakit ginjal algoritma Nguyen Widrow jauh lebih baik.
Copyrights © 2014