International Journal of Electrical and Computer Engineering
Vol 12, No 5: October 2022

Statistical features learning to predict the crop yield in regional areas

Pinaka Pani Ramanahalli (REVA University)
Hemanth Kollegal Siddamallu (REVA University)
Ravi Kumar Yelwala Basavaraju (University of Mysore)



Article Info

Publish Date
01 Oct 2022

Abstract

The plethora of information presented in the form of benchmark dataset plays a significant role in analyzing and understanding the crop yield in certain regions of regional territory. The information may be presented in the form of attributes makes a prediction of crop yield in various regions of machine learning. The information considered for processing involves data cleaning initially followed by binning to reduce the missing data. The information collected is subjected to clustering of data items based on patterns of similarity, The data items that are similar in nature is fed to the system with similarity measure, which involves understanding the distance of data items from its related data item leading to hyper parameters for analyzing of information while calculating the crop yield. The information may be used to ascertain the patterns of data that exhibit similarity with nearest neighbor represented by another attribute. Thus, the research method has yielded an accuracy of 89.62% of classification for predicting the crop yield in agricultural areas of Karnataka region.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...