International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 11, No 2: July 2022

Design and performance analysis of efficient hybrid mode multi-ported memory modules on FPGA platform

Druva Kumar Siddaraju (Dayananda Sagar College of Engineering)
Roopa Munibyrappa (Dayananda Sagar College of Engineering)



Article Info

Publish Date
01 Jul 2022

Abstract

The multi-ported memories (MPMs) are essential and are part of the parallel computing system for high-performance features. The MPMs are commonly used in most processors and advanced system-on-chip (SoC) for faster computation and high-speed processing. In this manuscript, efficient MPMs are designed using the integration of hierarchical bank division with xor (HBDX) and bank division with remap table (BDRT) approaches. The BDRT approach is configured using remap table with a hash write controlling mechanism to avoid write conflicts. The different multiple read ports are designed using BDX, and HBDX approaches are discussed in detail. The results of 2W4R and 3W4R memory modules are analyzed in detail concerning chip area, operating frequency (MHz), block random access memories (BRAMs), and throughput (Gbps) for different memory depths on virtex-7 field programmable gate array (FPGA). The 2W4R utilizes 2.27% slices, operates at 268 MHz frequency by consuming 64 BRAMs for 16K memory depth. Similarly, the 3W4R uses 2.28% slices, operates at 250 MHz frequency by consuming 96 BRAMs for 16K Memory depth. The proposed designs are compared with existing MPM approaches with better chip utilization (Slices), frequency, and BRAMs on the same FPGA device.

Copyrights © 2022






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...