JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 3 No 3 (2022): April 2022

Deteksi Non-Spoofing Wajah pada Video secara Real Time Menggunakan Faster R-CNN

Sunario Megawan (Universitas Mikroskil, Medan)
Wulan Sri Lestari (Universitas Mikroskil, Medan)
Apriyanto Halim (Universitas Mikroskil, Medan)



Article Info

Publish Date
29 Apr 2022

Abstract

Face non-spoofing detection is an important job used to ensure authentication security by performing an analysis of the captured faces. Face spoofing is the process of fake faces by other people to gain illegal access to the biometric system which can be done by displaying videos or images of someone's face on the monitor screen or using printed images. There are various forms of attacks that can be carried out on the face authentication system in the form of face sketches, face photos, face videos and 3D face masks. Such attacks can occur because photos and videos of faces from users of the facial authentication system are very easy to obtain via the internet or cameras. To solve this problem, in this research proposes a non-spoofing face detection model on video using Faster R-CNN. The results obtained in this study are the Faster R-CNN model that can detect non-spoof and spoof face in real time using the Raspberry Pi as a camera with a frame rate of 1 fps.

Copyrights © 2022






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...