Computer Science and Information Technologies
Vol 3, No 2: July 2022

Enhancing the fuzzy inference system using genetic algorithm for predicting the optimum production of a scientific publishing house

Siti Kania Kushadiani (Indonesian Institute of Sciences)
Agus Buono (IPB University)
Budi Nugroho (Indonesian Institute of Sciences)



Article Info

Publish Date
01 Jul 2022

Abstract

As a scientific publishing house, Indonesian Institute of Sciences (LIPI) Press' encountered some problems in publication planning, mainly predicting the optimum production of publications. This study aimed to enhance a fuzzy inference system (FIS) parameters using the genetic algorithm (GA). The enhancements led to optimally predict the number of LIPI Press publications for the following year. The predictors used were the number of work units, the number of workers, and the publishing process duration. The dataset covered a five years range of total production of LIPI Press. Firstly, an expert set up the parameters of the fuzzy inference system denoted as a FIS expert. Next, we performed a FIS GA by applying the genetic algorithm and K-fold validation in splitting the training data and testing data. The FIS GA revealed optimum prediction with parameters that were composed of both population size (30), the probability of crossover (0.75), the probability of mutation (0.01), and the number of generations (150). The experiment results show that our enhanced FIS GA outperformed FIS expert approach.

Copyrights © 2022






Journal Info

Abbrev

csit

Publisher

Subject

Computer Science & IT Engineering

Description

Computer Science and Information Technologies ISSN 2722-323X, e-ISSN 2722-3221 is an open access, peer-reviewed international journal that publish original research article, review papers, short communications that will have an immediate impact on the ongoing research in all areas of Computer ...