Bulletin of Information Technology (BIT)
Vol 3 No 1: Maret 2022

Implementasi Data Mining Untuk Memprediksi Masa Panen Dalam Bercocok Tanam Dengan Menggunakan Algoritma Naive Bayes Classifier

Yustina Marbun (Univerista Budi Darma)



Article Info

Publish Date
30 Mar 2022

Abstract

Abstract−This study intends to predict the harvest period in farming at the Regional Technical Implementation Unit of Gabe Hutaraja Various Crops. The method used in this study is the Naive Bayes Classifier. The data used in this study are time series data from 2015 to 2017. The results of this study are predictions of rice, peanut, and corn crops in the future. Naive Bayes Classifier is a simple probabilistic classification process based on the application of Bayes' Theorem (Bayes rule) with the assumption of strong independence, in other words, in Naive Bayes, the model used is an independent feature model. Implementation using RapidMinner5.3 is used to help find an accurate value. The benefits of writing this research are that it can predict rice, peanut, and corn crops so that it is needed in farming as a field of planning and improving the quality of crop yields that aim to reduce farmers' losses.

Copyrights © 2022






Journal Info

Abbrev

BIT

Publisher

Subject

Computer Science & IT

Description

Jurnal Bulletin of Information Technology (BIT) memuat tentang artikel hasil penelitian dan kajian konseptual bidang teknik informatika, ilmu komputer dan sistem informasi. Topik utama yang diterbitkan mencakup:berisi kajian ilmiah informatika tentang : Sistem Pendukung Keputusan Sistem Pakar Sistem ...