JURIKOM (Jurnal Riset Komputer)
Vol 7, No 1 (2020): Februari 2020

Data Mining untuk Klasifikasi Penderita Kanker Payudara Berdasarkan Data dari University Medical Center Menggunakan Algoritma Naïve Bayes

Ibnu Ramadhan (Universitas Darwan Ali, Kalimantan Tengah)
Kurniawati Kurniawati (Universitas Darwan Ali, Kalimantan Tengah)



Article Info

Publish Date
15 Feb 2020

Abstract

The breast cancer sufferers data from the University Medical Center is data about patients suffering from breast cancer based on certain characteristics. This data has abundant information so that data mining can be done with the aim of digging deeper information which of course can be useful in the future. The data class itself is divided into 2 groups: recurrence and non-relapse classes. The technique used in this study is classification using the Naive Bayes algorithm. Naive Bayes is a simple probabilistic prediction technique based on the implementation of Bayes rules with a strong assumption of independence on features. The tool used to find accuracy values is RapidMiner 9.3. Data attributes consist of Class, Age, Menopause, Tumor-Size, Inv-Nodes, Node-Caps, Deg-Malig, Breast, Breast-Quad and Irradiant. In terms of methods, this study uses the CRISP-DM (Cross Industry Standard Process for Data Mining) method. This research is used as information in making decisions to determine policies taken in dealing with patients with breast cancer

Copyrights © 2020






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...